Further factorization of xn-1 over a finite field

نویسندگان

  • Yansheng Wu
  • Qin Yue
  • Shuqin Fan
چکیده

Let $\Bbb F_q$ be a finite field with $q$ elements and $n$ a positive integer. Mart\'inez, Vergara and Oliveira \cite{MVO} explicitly factorized $x^{n} - 1$ over $\Bbb F_q$ under the condition of $rad(n)|(q-1)$. In this paper, suppose that $rad(n)\nmid (q-1)$ and $rad(n)|(q^w-1)$, where $w$ is a prime, we explicitly factorize $x^{n}-1$ into irreducible factors in $\Bbb F_q[x]$ and count the number of its irreducible factors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Factorial and Noetherian Subrings of Power Series Rings

Let F be a field. We show that certain subrings contained between the polynomial ring F [X] = F [X1, · · · , Xn] and the power series ring F [X][[Y ]] = F [X1, · · · , Xn][[Y ]] have Weierstrass Factorization, which allows us to deduce both unique factorization and the Noetherian property. These intermediate subrings are obtained from elements of F [X][[Y ]] by bounding their total X-degree abo...

متن کامل

Efficient Identity Testing and Polynomial Factorization in Nonassociative Free Rings

In this paper we study arithmetic computations over non-associative, and non-commutative free polynomials ring F{x1, x2, . . . , xn}. Prior to this work, the non-associative arithmetic model of computation was considered by Hrubes, Wigderson, and Yehudayoff [HWY10]. They were interested in completeness and explicit lower bound results. We focus on two main problems in algebraic complexity theor...

متن کامل

Efficient Identity Testing and Polynomial Factorization over Non-associative Free Rings

In this paper we study arithmetic computations in the nonassociative, and noncommutative free polynomial ring F{x1, x2, . . . , xn}. Prior to this work, nonassociative arithmetic computation was considered by Hrubes, Wigderson, and Yehudayoff [HWY10], and they showed lower bounds and proved completeness results. We consider Polynomial Identity Testing (PIT) and polynomial factorization over F{x...

متن کامل

On value sets of polynomials over a field

Abstract Let F be any field. Let p(F ) be the characteristic of F if F is not of characteristic zero, and let p(F ) = +∞ otherwise. Let A1, . . . , An be finite nonempty subsets of F , and let f(x1, . . . , xn) = a1x k 1 + · · ·+ anx k n + g(x1, . . . , xn) ∈ F [x1, . . . , xn] with k ∈ {1, 2, 3, . . .}, a1, . . . , an ∈ F \ {0} and deg g < k. We show that |{f(x1, . . . , xn) : x1 ∈ A1, . . . ,...

متن کامل

On the Complexity of Noncommutative Polynomial Factorization

In this paper we study the complexity of factorization of polynomials in the free noncommutative ring F〈x1, x2, . . . , xn〉 of polynomials over the field F and noncommuting variables x1, x2, . . . , xn. Our main results are the following: • Although F〈x1, . . . , xn〉 is not a unique factorization ring, we note that variabledisjoint factorization in F〈x1, . . . , xn〉 has the uniqueness property....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1710.07943  شماره 

صفحات  -

تاریخ انتشار 2017